Abstract

AbstractFluctuating asymmetry (FA), a measure of developmental stability, has been proposed as a simple technique for identifying populations suffering from inbreeding and a loss of genetic diversity. However, there is controversy regarding the relationship between FA and both allozyme heterozygosity and pedigree inbreeding coefficients (F). FA of sternopleural bristle number in Drosophila melanogaster was measured in populations maintained at effective sizes of 25 (8 replicates), 50 (6), 100 (4), 250 (3) and 500 (2) for 50 generations (inbreeding coefficients of 0.05—0.71). FA was calculated from the same data set using three different indices (FA1, FA5 and FA6). There was no significant relationship of FA with pedigree inbreeding coefficients for any of the three indices. The relationship between FA and allozyme heterozygosity was non‐significant for indices FA5 and FA6 (the more powerful indices) and only significant for FA1. A second comparison of highly inbred (F ∼ 1) populations with their outbred base population showed significantly greater FA in the inbred populations only when analysed with FA6. Analysis of the same data using FA1 and FA5 showed non‐significant relationships in the opposite direction. If a relationship between FA and genetic diversity does exist, it is weak and inconsistent. Consequently, our results do not support the use of FA as a monitoring tool to detect inbreeding or loss of genetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call