Abstract

Current antimicrobial susceptibility testing (AST) requires 16-24 hours, delaying initiation of appropriate antibiotics. Hence, there is a need for rapid AST. This study aims to develop and evaluate the feasibility of a rapid flow cytometric AST assay to determine minimum inhibitory concentration (MIC) for carbapenem-resistant Acinetobacter baumannii (CRAB). Antibiotic exposure causes increased intracellular reactive oxygen species (ROS) in bacteria. We hypothesized that ROS can be used as a marker to determine MIC. We assessed three CRAB clinical isolates across fifteen antibiotics at various concentrations in a customized 96-well microtiter plate. The antibiotics assessed include amikacin, beta-lactams (ampicillin/sulbactam, aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem, meropenem, and piperacillin/tazobactam), levofloxacin, polymyxin B, rifampicin, trimethoprim/sulfamethoxazole, and tetracyclines (tigecycline and minocycline). These clinical CRAB isolates were assessed for ROS after antibiotic treatment. Increased ROS levels indicated by increased RedoxSensorTM Green (RSG) fluorescence intensity was assessed using flow cytometry (FCM). MIC was set as the lowest antibiotic concentration that gives a ≥1.5-fold increase in mode RSG fluorescence intensity (MICRSG). Accuracy of MICRSG was determined by comparing against microtiter broth dilution method performed under CLSI guidelines. ROS was deemed accurate in determining the MICs for β-lactams (83.3% accuracy) and trimethoprim/sulfamethoxazole (100% accuracy). In contrast, ROS is less accurate in determining MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy), amikacin (33.3% accuracy), and tetracyclines (33.3% accuracy). Collectively, this study described an FCM-AST assay to determine antibiotic susceptibility of CRAB isolates within 5 hours, reducing turnaround time up to 19 hours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.