Abstract
We explore the existence of Lorentzian wormholes in the context of an effective on-brane, scalar-tensor theory of gravity. In such theories, the timelike convergence condition, which is always violated for wormholes, has contributions, via the field equations, from on-brane matter as well as from an effective geometric stress energy generated by a bulk-induced radion field. It is shown that, for a class of wormholes, the required on-brane matter, as seen by an on-brane observer in the Jordan frame, is not exotic and does not violate the Weak Energy Condition. The presence of the effective geometric stress energy in addition to on-brane matter is largely responsible for creating this intriguing possibility. Thus, if such wormholes are ever found to exist in the Universe, they would clearly provide pointers towards the existence of a warped extra dimension as proposed in the two-brane model of Randall and Sundrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.