Abstract

Configurational entropy is frequently used to rationalize the structural dynamics of glass-forming liquids. The main problem with this concept is that it is not directly accessible to experiments. We introduce a procedure to estimate the configurational component of the excess entropy of a liquid --specifically, the configurational-entropy contribution from the structural relaxation process-- through a combined investigation of dynamic and thermodynamic properties as functions of temperature and pressure. We test our method on orthoterphenyl, salol, and glycerol, and find that the fraction of excess entropy that arises from structural configurations is about 70% for all three materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.