Abstract

An ethogram is a catalogue of discrete behaviors typically employed by a species. Traditionally animal behavior has been recorded by observing study individuals directly. However, this approach is difficult, often impossible, in the case of behaviors which occur in remote areas and/or at great depth or altitude. The recent development of increasingly sophisticated, animal-borne data loggers, has started to overcome this problem. Accelerometers are particularly useful in this respect because they can record the dynamic motion of a body in e.g. flight, walking, or swimming. However, classifying behavior using body acceleration characteristics typically requires prior knowledge of the behavior of free-ranging animals. Here, we demonstrate an automated procedure to categorize behavior from body acceleration, together with the release of a user-friendly computer application, “Ethographer”. We evaluated its performance using longitudinal acceleration data collected from a foot-propelled diving seabird, the European shag, Phalacrocorax aristotelis. The time series data were converted into a spectrum by continuous wavelet transformation. Then, each second of the spectrum was categorized into one of 20 behavior groups by unsupervised cluster analysis, using k-means methods. The typical behaviors extracted were characterized by the periodicities of body acceleration. Each categorized behavior was assumed to correspond to when the bird was on land, in flight, on the sea surface, diving and so on. The behaviors classified by the procedures accorded well with those independently defined from depth profiles. Because our approach is performed by unsupervised computation of the data, it has the potential to detect previously unknown types of behavior and unknown sequences of some behaviors.

Highlights

  • Assessing animal behavior is essential to understand animal life

  • We demonstrate our newly developed procedure for generating ethograms from body acceleration data and evaluate its performance through a comparison with the known behavior profile of the European shag

  • The surge acceleration signals were classified into 20 behavior groups in the acceleration ethogram

Read more

Summary

Introduction

Assessing animal behavior is essential to understand animal life. The initial process of studying behavior is to make a catalogue of the discrete behaviors typically employed by a species, namely an ethogram. Making an ethogram by direct observation is fundamental to understanding animal behavior [1] This approach is not feasible for some flying or diving animals that often spend considerable portions of their lives beyond the limit of human vision. In such cases, indirect observation via biotelemetry allows researchers to monitor animal behavior remotely [2]. Static acceleration is derived from an animal’s body pitch, while dynamic acceleration is derived from body movement From these two parameters, researchers can readily identify a range of discrete behaviors [9,10,11,12,13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.