Abstract

While sugar beet pectins (SBPs) are well known for effectively stabilizing fine oil droplets in low-fat food and beverages, e.g., low-fat dressings and soft drinks, it often fails in products of higher oil contents. The aim of this study was to improve the emulsifying properties of SBPs and, consequently, their ability to reduce coalescence during high pressure homogenization of products with increased oil content. Therefore, the molecular size of SBPs was reduced by partial cleavage of the homogalacturonan backbone using the enzymes exo- and endo-polygalacturonanase and varying incubation times. The sizes of SBPs were compared based on the molecular size distribution and hydrodynamic diameter. In addition, to obtain information on the interfacial activity and adsorption rate of SBPs, the dynamic interfacial tension was measured by drop profile analysis tensiometry. The (non)modified SBPs were used as emulsifying agents in 30 wt% mct oil–water emulsions stabilized with 0.5 wt% SBP at pH 3, prepared by high-pressure homogenization (400–1000 bar). By analyzing the droplet size distributions, conclusions could be drawn about the coalescence that occurred after droplet breakup. It could be shown that SBPs modified by exo-polygalacturonanase stabilized the oil–water interface more rapidly, resulting in less coalescence and the smallest oil droplets. In contrast, SBPs modified with endo-polygalacturonanase resulted in poorer emulsification properties, and thus larger oil droplets with increasing incubation time. The differences could be attributed to the different cleavage pattern of the enzymes used. The results suggest that a minimum molecular size is required for the stabilization of fine oil droplets with SBPs as emulsifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call