Abstract
Herein we present a theoretical foray on crucial role played by the graphitic tunnelling barrier in tuning spintronic feature of two-dimensional insulating graphene layer sandwiched between two ferromagnetic graphitic carbon nitride (g- C4N3) electrodes. We mainly focused on the tuning of spin filter efficiency due to the alteration in tunnelling width. 100% spin filter efficiency reported at each tunnelling width. High degree of spin filter efficiency is restored even at finite bias over a wide range of bias range -1.0 V to +1.0 V. Entire observation have been explained by analysing transmission spectrum at zero bias and a molecular level origin of the observed spintronic response of the device have been provided by analysing the Molecular Projected Self-Consistent Hamiltonian states (MPSH) and transmission pathways of the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.