Abstract
In the present work, an investigation has been conducted by electrospray ionization (ESI) experiments to characterize the structures of iron gall ink complexes in solution. Simple mono and polyphenolic acid molecules added to iron sulfate salts were chosen to model the recipes of ink composition. Theoretical calculations have been used (1) to determine the stability of the ionic complexes generated in the gas phase, (2) to explain which structures are more likely generated in the electrospray ion source, and (3) to determine which mechanisms are likely involved in their formation. Fragmentation pathways of the derived structures have also been investigated and rationalized to facilitate the interpretation of the data obtained under collisionally induced dissociation (CID) conditions.The present study confirms the assumption that ESI experiments with ions that are preformed in solution must be considered carefully. As a matter of fact, the study of ion formation mechanisms in the ion source is necessary to establish relationships between the ion structures in the condensed phase and the gas phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.