Abstract

Concentric tube manipulators exhibit elastic instability in which tubes snap from one configuration to another, rapidly releasing stored strain energy. While this has long been viewed as a negative phenomenon to be avoided at all costs, in this paper we explore for the first time whether the effect can be harnessed beneficially for certain applications. Specifically, we show that the energy released in an instability can be useful for challenging, high-force surgical tasks such as driving a needle through tissue. We use concentric tube models to define the energy released during elastic instability and experimentally evaluate a two-tube concentric manipulator that can drive suture needles through tissue by harnessing elastic instability beneficially.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call