Abstract

Peritoneal effluent contains clinically relevant substances derived from intraperitoneal production or transperitoneal transport, or both. The glycoproteinase matrix metalloproteinase 2 (MMP-2) cleaves denatured collagen and complements other collagenases in the degradation of fibrillar collagens. Elevated intraperitoneal levels of plasminogen activator inhibitor 1 (PAI-1) have been demonstrated to be present in patients with intra-abdominal adhesions. The aim of the present study was therefore to investigate the potential for effluent MMP-2 and PAI-1 to be used as markers of the development of peritoneal alterations. In addition, MMP-2 was analyzed in previously frozen effluent samples from a uremic rat model, in which data concerning the severity of peritoneal fibrosis were available. This prospective, single-center cohort study included 86 incident peritoneal dialysis (PD) patients. All patients were treated solely with biocompatible dialysis solutions and underwent a standard peritoneal permeability analysis (SPA). The presence of local MMP-2 and PAI-1 production and the relationships between those markers and peritoneal transport parameters were analyzed. Furthermore, effluent interleukin 6 was analyzed as a marker of local inflammation. Median effluent levels of 21.4 ng/mL for MMP-2 and 0.9 ng/mL for PAI-1 were found. The median dialysate appearance rates were 218.8 ng/min for MMP-2 and 9.6 ng/min for PAI-1. Local peritoneal production averaged 90% of effluent MMP-2 concentration and 74% of effluent PAI-1 concentration. Furthermore, correlations between peritoneal transport parameters and MMP-2 and PAI-1 were observed. Longitudinal follow-up showed no change for MMP-2 (p = 0.37), but a tendency for PAI-1 to increase with the duration of PD (p < 0.001). In rats, a significant relationship was present between the extent of peritoneal fibrosis and the appearance rate of MMP-2 (r = 0.64, p = 0.03). The foregoing data illustrate the potential of effluent MMP-2 and PAI-1 as biomarkers of peritoneal modifications, especially fibrosis; however, the components of peritoneal transport and local production should be clearly distinguished in every patient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call