Abstract
In recent decades, ecological niche models (ENMs) have been widely used to predict suitable habitats for species. However, for invasive organisms, the prediction accuracy is unclear. In this study, we employed the most widely used maximum entropy (MaxEnt) model and ensemble model (EM) Biomod2 and verified the practical effectiveness of the ENM in predicting the distribution areas of invasive insects based on the true occurrence of Hyphantria cunea in China. The results showed that when only limited data of invasive areas were used, the two ENMs could not effectively predict the distribution of suitable habitats of H. cunea, although the use of global data can greatly improve the prediction accuracy of ENMs. When analyzing the same data, Biomod2's prediction accuracy was significantly better than that of MaxEnt. For long-term predictions, the area of suitable habitat predicted by the ENMs was much greater than the occurrence area; for short-term predictions, the accuracy of the predicted area was significantly improved. Under the current conditions, the area of suitable habitat for H. cunea in China is 118 × 104 km2, of which 59.32% is moderately or highly suitable habitat. Future climate change could significantly increase the suitable habitat area of H. cunea in China, and the predicted area of suitable habitats in all climate scenarios exceeded 355 × 104 km2, accounting for 36.98% of the total land area in China. This study demonstrates the use of ENMs to study invasive insects and provides a reference for the management of H. cunea in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.