Abstract

BackgroundCattail (Typha domingensis) has been spreading in phosphorus (P) enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense). Abundant evidence in the literature explains how the opportunistic features of Typha might lead to a complete dominance in P-enriched areas. Less clear is how Typha can grow and acquire P at extremely low P levels, which prevail in the unimpacted areas of the Everglades.ResultsApparent P uptake kinetics were measured for intact plants of Cladium and Typha acclimated to low and high P at two levels of oxygen in hydroponic culture. The saturated rate of P uptake was higher in Typha than in Cladium and higher in low-P acclimated plants than in high-P acclimated plants. The affinity for P uptake was two-fold higher in Typha than in Cladium, and two- to three-fold higher for low-P acclimated plants compared to high-P acclimated plants. As Cladium had a greater proportion of its biomass allocated to roots, the overall uptake capacity of the two species at high P did not differ. At low P availability, Typha increased biomass allocation to roots more than Cladium. Both species also adjusted their P uptake kinetics, but Typha more so than Cladium. The adjustment of the P uptake system and increased biomass allocation to roots resulted in a five-fold higher uptake per plant for Cladium and a ten-fold higher uptake for Typha.ConclusionsBoth Cladium and Typha adjust P uptake kinetics in relation to plant demand when P availability is high. When P concentrations are low, however, Typha adjusts P uptake kinetics and also increases allocation to roots more so than Cladium, thereby improving both efficiency and capacity of P uptake. Cladium has less need to adjust P uptake kinetics because it is already efficient at acquiring P from peat soils (e.g., through secretion of phosphatases, symbiosis with arbuscular mycorrhizal fungi, nutrient conservation growth traits). Thus, although Cladium and Typha have qualitatively similar strategies to improve P-uptake efficiency and capacity under low P-conditions, Typha shows a quantitatively greater response, possibly due to a lesser expression of these mechanisms than Cladium. This difference between the two species helps to explain why an opportunistic species such as Typha is able to grow side by side with Cladium in the P-deficient Everglades.

Highlights

  • Cattail (Typha domingensis) has been spreading in phosphorus (P) enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense)

  • The main research question we address here is: Which characteristics of Cladium and Typha allow the species to grow in the oligotrophic P-deficient interior of the Florida Everglades, and at the same time explain why Typha out-competes Cladium under P-enriched conditions? As to the second part of the question, abundant evidence in the literature explains how the opportunistic features of Typha can lead to complete dominance in Penriched areas [e.g. [7,8,13,15]]

  • A main finding of our study was that Typha has a more plastic P uptake system than Cladium that allows uptake of P over a wide range of external P concentrations and promotes high growth rates with a relatively low investment in root mass at high P levels

Read more

Summary

Introduction

Cattail (Typha domingensis) has been spreading in phosphorus (P) enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense). On the other hand, has traits of an opportunistic species from nutrient-rich habitats with high growth rates, short leaf longevity, high capacity for nutrient uptake, high leaf nutrient concentrations and flexible biomass partitioning [8,25] Both species are adapted to grow in waterlogged soils by virtue of a well-developed aerenchyma system, but convective gas flow has been documented only in Typha and not in Cladium [26,27,28,29]. Cladium has lower root porosity and generally higher alcoholic fermentation rates, indicating lower capacity for root aeration than Typha [30]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call