Abstract

Deep fertilization strategy has been proven to be an important fertilizer management method for improving fertilizer utilization efficiency and crop yield. However, the relationship between soil chemical and biochemical characteristics and crop productivity under different fertilization depth patterns still needs comprehensive evaluation. Field tests on spring maize were therefore carried out in the Loess Plateau of China for two successive growing seasons from 2019 to 2020. Four distinct fertilization depths of 5 cm, 15 cm, 25 cm, and 35 cm were used to systematically investigate the effects of fertilization depth on soil physicochemical parameters, enzyme activity, and biochemical properties. The findings demonstrated that although adjusting fertilization depths (D15, D25) did not significantly affect the soil organic carbon content, they did significantly improve the soil chemical and biochemical characteristics in the root zone (10–30 cm), with D25 having a greater influence than D15. Compared with D5, the total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), Olsen-P, dissolved organic carbon, and nitrogen (DOC and DON) in the root zone of D25 significantly increased by 12.02%, 7.83%, 22.21%, 9.56%, 22.29%, and 26.26%, respectively. Similarly, the urease, invertase, phosphatase, and catalase in the root zone of D25 significantly increased by 9.56%, 13.20%, 11.52%, and 18.05%, while microbial biomass carbon, nitrogen, and phosphorus (MBC, MBN, and MBP) significantly increased by 18.91%, 32.01% and 26.50%, respectively, compared to D5. By optimizing the depth of fertilization, the distribution ratio of Ca2–P and Ca8–P in the inorganic phosphorus components of the root zone can also be increased. Therefore, optimizing fertilization depth helps to improve soil chemical and biochemical characteristics and increase crop yield. The results of this study will deepen our understanding of how fertilization depth influence soil properties and crop responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.