Abstract

Poor indoor air quality has adverse health impacts. Children are considered a risk group, and they spend a significant time indoors at home and in schools. Air quality monitoring has traditionally been limited due to the cost and size of the monitoring stations. Recent advancements in low-cost sensors technology allow for economical, scalable and real-time monitoring, which is especially helpful in monitoring air quality in indoor environments, as they are prone to sudden peaks in pollutant concentrations. However, data reliability is still a considerable challenge to overcome in low-cost sensors technology. Thus, following a monitoring campaign in a nursery and primary school in Porto urban area, the present study analyzed the performance of three commercially available low-cost IoT devices for indoor air quality monitoring in real-world against a research-grade device used as a reference and developed regression models to improve their reliability. This paper also presents the developed on-field calibration models via machine learning technique using multiple linear regression, support vector regression, and gradient boosting regression algorithms and focuses on particulate matter (PM1, PM2.5, PM10) data collected by the devices. The performance evaluation results showed poor detection of particulates in classrooms by the low-cost devices compared to the reference. The on-field calibration algorithms showed a considerable improvement in all three devices' accuracy (reaching up to R2 > 0.9) for the light scattering technology based particulate matter sensors. The results also show the different performance of low-cost devices in the lunchroom compared to the classrooms of the same school building, indicating the need for calibration in different microenvironments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call