Abstract

Time delays associated with processes leading to a failure or stress relaxation in materials and earthquakes are studied in terms of continuum damage mechanics. Damage mechanics is a quasi-empirical approach that describes inelastic irreversible phenomena in the deformation of solids. When a rock sample is loaded, there is generally a time delay before the rock fails. This period is characterized by the occurrence and coalescence of microcracks which radiate acoustic signals of broad amplitudes. These acoustic emission events have been shown to exhibit power-law scaling as they increase in intensity prior to a rupture. In case of seismogenic processes in the Earth's brittle crust, all earthquakes are followed by an aftershock sequence. A universal feature of aftershocks is that their rate decays in time according to the modified Omori's law, a power-law decay. In this paper a model of continuum damage mechanics in which damage (microcracking) starts to develop when the applied stress exceeds a prescribed yield stress (a material parameter) is introduced to explain both laboratory experiments and systematic temporal variations in seismicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call