Abstract
AbstractRecent studies have demonstrated a persistent decreasing trend in the spring sensible heat (SH) source over the Tibetan Plateau (TP) during the past three decades. By comparing simulations from nine state-of-the-art atmospheric general circulation models (AGCMs) driven by historical forcing fields with both observational data and five reanalysis datasets, the authors found that the AGCMs are unable to reproduce the change in the SH flux over the TP. This deficiency arises because the observed decreasing trend in SH flux depends primarily on the change in surface wind speed according to the bulk formula, whereas in the models it is also influenced largely by changes in the land-air temperature difference related to the systematic cold bias. In addition, an obvious discrepancy exists in other aspects of the diabatic heating simulated by the models, suggesting that a significant improvement is required in the physical schemes associated with land surface processes and diabatic heating over the compli...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.