Abstract

We investigated antioxidant effects of CoQ10 supplementation on the prevention of OS-induced ovarian damage and to evaluate the protective effect of such supplementation against OS-related DNA damage. Twenty-four adult female Sprague-Dawley rats were randomly divided into three groups (8 rats per group): group 1 (control): saline, ip, and orally; group 2 (cisplatin group): cisplatin, 4.5mg/kg ip, two times with an interval of 7days; and group 3 (cisplatin + CoQ10 group): cisplatin, 4.5mg/kg ip, two times with an interval of 7days, and 24h before cisplatin, 150mg/kg/day orally in 1mL of saline daily for 14days. Serum concentrations of anti-Mullerian hormone (AMH), number of AMH-positive follicles, the assessment of the intensity of 8'OHdG immunoreactivity, the primordial, antral and atretic follicle counts in the ovary were assessed. The mean serum AMH concentrations were 1.3 ± 0.19, 0.16 ± 0.03, and 0.27 ± 0.20ng/mL in groups 1, 2, and 3, respectively (p < 0.01). Serum AMH levels were significantly higher in group 1 compared to groups 2 and 3 (p < 0.01 and p = 0.01, respectively). There was a statistically significant difference in AMH-positive follicle count between the groups (p < 0.01). Group 1 showed higher numbers of AMH-positive granulosa cells compared to group 2 (p = 0.01). A significant difference was found in the primordial, the atretic, and antral follicle counts between the three groups (p < 0.01, p < 0.01, and p < 0.01, respectively). The atretic follicle count was significantly lower in the cisplatin plus CoQ10 group compared to the cisplatin group (p < 0.01). The antral follicle counts were significantly higher in the cisplatin plus CoQ10 group compared with the cisplatin group (p < 0.01). There was a statistically significant difference in the intensity of staining of the follicles that were positive for anti-8'OHdG between the groups (p = 0.02). Group 1 showed a significant lower intensity of staining of the follicles positive for anti-8'OHdG compared with group 2 (p = 0.03). CoQ10 supplementation may protect ovarian reserve by counteracting both mitochondrial ovarian ageing and physiological programmed ovarian ageing although the certain effect of OS in female infertility is not clearly known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.