Abstract

In East Africa, lepidopteran stemborers such as Chilo partellus and Busseola fusca are major constraints to production of maize, which is the main staple food crop in the region. Cereals depend on silicon (Si)-based defences to fight off herbivores. Using altitudinal ranges in the East African highlands as ecological surrogates for inferring climate change, it was shown that Si concentrations in soil and maize decreased with altitude. This was attributed, in part, to low temperatures at high altitudes, which negatively affected Si assimilation by maize. Experiments showed that B. fusca was more susceptible to Si than C. partellus. Hence the predominance of B. fusca in the highlands and of C. partellus in the lowlands could be partly explained by altitudinal differences in Si concentrations in maize plants. Therefore, a rise in temperature due to climate change should enhance the plants’ Si assimilation and as a result C. partellus might move into the higher altitudes and increasingly displace B. fusca.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.