Abstract

The current paper is concerned with the spatial spreading speed and minimal wave speed of the following Keller-Segel chemoattraction system, [Formula: see text]where [Formula: see text], a, b, [Formula: see text], and [Formula: see text] are positive constants. Assume [Formula: see text] . Then if in addition [Formula: see text] holds, it is proved that [Formula: see text] is the spreading speed of the solutions of (0.1) with nonnegative continuous initial function [Formula: see text] with nonempty compact support, that is, [Formula: see text]and [Formula: see text]where [Formula: see text] is the unique global classical solution of (0.1) with [Formula: see text]. It is also proved that, if [Formula: see text] and [Formula: see text] holds, then [Formula: see text] is the minimal speed of the traveling wave solutions of (0.1) connecting (0,0) and [Formula: see text], that is, for any [Formula: see text], (0.1) has a traveling wave solution connecting (0,0) and [Formula: see text] with speed c, and (0.1) has no such traveling wave solutions with speed less than [Formula: see text]. Note that [Formula: see text] is the spatial spreading speed as well as the minimal wave speed of the following Fisher-KPP equation, [Formula: see text]Hence, if [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text], then the chemotaxis neither speeds up nor slows down the spatial spreading in (0.1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call