Abstract
Abstract A unique dataset of atmospheric observations over the Nordic Seas has been analyzed to investigate the role of convective available potential energy (CAPE) for the energetics of polar lows. The observations were made during the flight campaign of the Norwegian International Polar Year (IPY) and The Observing System Research and Predictability Experiment (THORPEX) in February and March 2008, which specifically targeted polar lows. The data reveal virtually no conditional instability and very limited CAPE. It is suggested that the significance of CAPE values should be assessed by calculating the time scale tCAPE that is necessary for the heat fluxes from the ocean to transfer the corresponding amount of energy. Even the largest CAPE values have a tCAPE of less than 1 h. These CAPE values are associated with unconditional instability. It is concluded that the observed CAPE should be seen as a temporary stage in an energy flux rather than as an energy reservoir. Based on the findings in this investigation, it is proposed that significant reservoirs of CAPE over the marine Arctic atmosphere are impossible since CAPE production will automatically trigger convection and CAPE is consumed as it is produced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.