Abstract

The prime challenges limiting efficient flood management, especially over large regions, are concurrently related to limited hydro-meteorological observations and exorbitant economics with computational modeling. Reanalysis datasets are a valuable alternative, as they furnish relevant variables at high spatiotemporal resolutions. In recent times, ERA5 has gained significant recognition for its applications in hydrological modeling; however, its efficacy at the inundation scale needs to be understood. The advent of "global flood models" has ensured flood inundation and hazard modeling over large regions, otherwise obscure with regional models. For the first time, the present study explores the fidelity of ERA5 reanalysis at the inundation scale over the Mahanadi River basin, a severely flood-prone region in India. The biases in the discharges within ERA5 are ascertained by comparing them with station-level data at the nascent and extreme levels (i.e., 95th and 99th percentiles). Later, ERA5 is fed to LISFLOOD-FP, an acclaimed global flood model, to reenact the 2006, 2008, 2011, and 2014 flood events. Hit rates exceeding 0.8 compared to MODIS satellite imageries affirm the suitability of ERA5 in accurately capturing flood inundation. Distributed design discharges for 50yr and 100yr are derived using a set of extreme value distributions and fed to LISFLOOD-FP to derive design flood inundation and hazards in terms of both "depth" and "product of depth and velocity" of flood waters. Results derived from the study provide vital lessons for efficient land-use planning and adaptation strategies linked to flood protection and resilience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call