Abstract

Although lung cancer screening trials have showed the efficacy of computed tomography to decrease mortality compared with chest radiography, the two are widely taken as different kinds of clinical practices. Artificial intelligence can improve outcomes by detecting lung tumors in chest radiographs. Currently, artificial intelligence is used as an aid for physicians to interpret radiograms, but with the future evolution of artificial intelligence, it may become a modality that replaces physicians. Therefore, in this study, we investigated the current situation of lung cancer diagnosis by artificial intelligence. In total, we recruited 174 consecutive patients with malignant pulmonary tumors who underwent surgery after chest radiography that was checked by artificial intelligence before surgery. Artificial intelligence diagnoses were performed using the medical image analysis software EIRL X-ray Lung Nodule version 1.12, (LPIXEL Inc., Tokyo, Japan). The artificial intelligence determined pulmonary tumors in 90 cases (51.7% for all patients and 57.7% excluding 18 patients with adenocarcinoma in situ). There was no significant difference in the detection rate by the artificial intelligence among histological types. All eighteen cases of adenocarcinoma in situ were not detected by either the artificial intelligence or the physicians. In a univariate analysis, the artificial intelligence could detect cases with larger histopathological tumor size (p < 0.0001), larger histopathological invasion size (p < 0.0001), and higher maximum standardized uptake values of positron emission tomography-computed tomography (p < 0.0001). In a multivariate analysis, detection by AI was significantly higher in cases with a large histopathological invasive size (p = 0.006). In 156 cases excluding adenocarcinoma in situ, we examined the rate of artificial intelligence detection based on the tumor site. Tumors in the lower lung field area were less frequently detected (p = 0.019) and tumors in the middle lung field area were more frequently detected (p = 0.014) compared with tumors in the upper lung field area. Our study showed that using artificial intelligence, the diagnosis of tumor-associated findings and the diagnosis of areas that overlap with anatomical structures is not satisfactory. While the current standing of artificial intelligence diagnostics is to assist physicians in making diagnoses, there is the possibility that artificial intelligence can substitute for humans in the future. However, artificial intelligence should be used in the future as an enhancement, to aid physicians in the role of a radiologist in the workflow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call