Abstract

To develop an artificial neural network model incorporating both spatial and ordinal approaches to predict glaucomatous visual field (VF) progression. Cohort study. Methods From a cohort of primary open-angle glaucoma patients, 9212 eyes of 6047 patients who underwent regular reliable VF examinations for >4 years were included. We constructed all possible spatial-ordinal tensors by stacking 3 consecutive VF tests (VF-blocks) with at least 3 years of follow-up. Trend-based, event-based, and combined criteria were defined to determine the progression. VF-blocks were considered "progressed" if progression occurred within 3 years; the progression was further confirmed after 3 years. We constructed 6 convolutional neural network (NN) models and 2 linear models: regression on global indices and pointwise linear regression (PLR). We compared area under the receiver operating characteristic curve (AUROC) of each model for the prediction of glaucomatous VF progression. Among 43,260 VF-blocks, 4406 (10.2%), 4376 (10.1%), and 2394 (5.5%) VF-blocks were classified as progression-based on trend-based and event-based and combined criteria. For all 3 criteria, the progression group was significantly older and had worse initial MD and VF index (VFI) than the nonprogression group (P < .001 for all). The best-performing NN model had an AUROC of 0.864 with a sensitivity of 0.42 at a specificity of 0.95. In contrast, an AUROC of 0.611 was estimated from a sensitivity of 0.28 at a specificity of 0.84 for the PLR. The NN models incorporating spatial-ordinal characteristics demonstrated significantly better performance than the linear models in the prediction of glaucomatous VF progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.