Abstract

Neurosurgery emphasizes the criticality of accurate differential diagnoses, with diagnostic delays posing significant health and economic challenges. As large language models (LLMs) emerge as transformative tools in healthcare, this study seeks to elucidate their role in assisting neurosurgeons with the differential diagnosis process, especially during preliminary consultations. This study employed three chat-based LLMs, ChatGPT (versions 3.5 and 4.0), Perplexity AI, and Bard AI, to evaluate their diagnostic accuracy. Each LLM was prompted using clinical vignettes, and their responses were recorded to generate differential diagnoses for 20 common and uncommon neurosurgical disorders. Disease-specific prompts were crafted using Dynamed, a clinical reference tool. The accuracy of the LLMs was determined based on their ability to identify the target disease within their top differential diagnoses correctly. For the initial differential, ChatGPT 3.5 achieved an accuracy of 52.63%, while ChatGPT 4.0 performed slightly better at 53.68%. Perplexity AI and Bard AI demonstrated 40.00% and 29.47% accuracy, respectively. As the number of considered differentials increased from two to five, ChatGPT 3.5 reached its peak accuracy of 77.89% for the top five differentials. Bard AI and Perplexity AI had varied performances, with Bard AI improving in the top five differentials at 62.11%. On a disease-specific note, the LLMs excelled in diagnosing conditions like epilepsy and cervical spine stenosis but faced challenges with more complex diseases such as Moyamoya disease and ALS. LLMs showcase the potential to enhance diagnostic accuracy and decrease the incidence of missed diagnoses in neurosurgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.