Abstract

SummaryModelling weed seedling emergence pattern appears to be a promising approach in the development of effective weed management programmes based on the selection of optimal timing of control operations. Thermal and hydrothermal time models propose that seed germination rates are proportional to the amount by which temperature and water potential exceed threshold values for these environmental factors. Hence, base temperature for seed germination is a fundamental biological parameter for the prediction of weed emergence. A series of laboratory experiments were conducted to estimate base temperature in three weed species belonging to the Asteraceae family, predominant in conservation tillage fields in north‐eastern Italy. The traditional method based on germination assays at constant temperatures was compared with a method based on assays at alternating temperatures. The latter might represent an alternative to the former for those species which do not germinate or only poorly under constant temperatures. Base temperature was estimated by regressing the reciprocal of the median germination time on temperature comparing two functions, a broken‐stick and an exponential‐type model. Both models showed good fit to all data in the whole temperature range and in almost all cases provided similar estimates of base temperature. The main result is that, for the weed species examined in this study, the use of alternating temperatures for base temperature estimation appears to be possible. However, further research is required to test if the use of germination assays performed at alternating temperatures can be a suitable method to estimate base temperature of species that have too low germination at constant temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.