Abstract
Portable Emission Measurement Systems (PEMS) are commonly used to measure absolute (mass per unit distance) emissions of a range of pollutants from road vehicles under real driving conditions. Because measuring large numbers of vehicles with PEMS is impractical, this paper investigates how vehicle emission remote sensing device (RSD) can supplement the use of PEMS. We simulate whether remote sensing measurements can accurately predict a vehicle's real-world distance-specific nitrogen oxides (NOX) emissions using RSD without measuring its exhaust flow rate. The approach uses readily available type-approval carbon dioxide (CO2) emission data together with average real-world divergences from studies based on user-reported fuel economy data. We find that at least 30 RS measurements from a given vehicle's journey are needed to reach a mean absolute error of 30% compared to a large reference data set of individual PEMS measurements. With that condition met, it is concluded that estimates agree well with actual NOX emissions from cars and the applied method does not introduce a systematic bias. It is also found that the accuracy of estimates for distance-specific NOX emissions does not significantly improve when more than 300 remote-sensing samples are available, with a mean absolute error converging to 23%. We conclude that this method could be used to screen large car fleets and identify vehicles or group of vehicles that are likely grossly exceeding air pollution standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.