Abstract

Abstract A method is proposed to retrieve raindrop shape–size relations from the radar measurements of reflectivity factor Zh, differential reflectivity Zdr, and specific differential phase Kdp at S band. This procedure is obtained using a domain defined by the two variables Kdp/Zh and Zdr where the drop size distribution (DSD) variability is collapsed onto a line and any variation is essentially due to the drop shape variability. To obtain information on the raindrop shape–size relation underlying a set of radar observations, this domain is studied in conjunction with another domain describing the relation between the drop axial ratio (or shape) and its equivolumetric diameter. Using an initial drop shape and choosing a set of DSDs described by a normalized gamma model, polarimetric radar measurements are produced by simulation. An averaged curve of Kdp/Zh versus Zdr is obtained and compared with the same curve obtained from the radar data. By changing the initial axial ratio relation, a procedure of minimization between the two curves is developed to derive the underlying drop shape–size relation governing the radar measurements under consideration. Three sets of radar data collected in different climatic regions are analyzed to evaluate whether there is a unique shape–size relation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call