Abstract

Current emission models of GeV-PeV neutrinos from gamma-ray bursts (GRBs) predict a neutrino flux with $\ll 1$ detected neutrinos per GRB with kilometer-scale neutrino observatories. The detection of this flux will require the stacking of data from a large number of GRBs, leading to an increased background rate, decreasing the significance of a single neutrino detection. We show that utilizing the temporal correlation between the expected gamma-ray and neutrino fluxes, one can significantly improve the neutrino signal-to-noise ratio. We describe how this temporal correlation can be used. Using realistic GRB and atmospheric neutrino fluxes and incorporating temporal, spectral and directional information, we estimate the probability of a single detected GRB-neutrino being a 5$\sigma$ discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.