Abstract
We propose a resilient control scheme to avoid catastrophic transitions associated with saddle-node bifurcations of periodic solutions. The conventional feedback control schemes related to controlling chaos can stabilize unstable periodic orbits embedded in strange attractors or suppress bifurcations such as period-doubling and Neimark–Sacker bifurcations whose periodic orbits continue to exist through the bifurcation processes. However, it is impossible to apply these methods directly to a saddle-node bifurcation since the corresponding periodic orbit disappears after such a bifurcation. In this paper, we define a pseudo periodic orbit which can be obtained using transient behavior right after the saddle-node bifurcation, and utilize it as reference data to compose a control input. We consider a pseudo periodic orbit at a saddle-node bifurcation in the Duffing equations as an example, and show its temporary attraction. Then we demonstrate the suppression control of this bifurcation, and show robustness of the control. As a laboratory experiment, a saddle-node bifurcation of limit cycles in the BVP oscillator is explored. A control input generated by a pseudo periodic orbit can restore a stable limit cycle which disappeared after the saddle-node bifurcation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.