Abstract

If a gamma-ray line is observed in the near future, it will be important to determine what kind of dark matter (DM) particle could be at its origin. We investigate the possibility that the gamma-ray line would be induced by a slow DM particle decay associated to the fact that the DM particle would not be absolutely neutral. A "millicharge" for the DM particle can be induced in various ways, in particular from a kinetic mixing interaction or through the Stueckelberg mechanism. We show that such a scenario could lead in specific cases to an observable gamma-ray line. This possibility can be considered in a systematic model-independent way, by writing down the corresponding effective theory. This allows for a multi-channel analysis, giving in particular upper bounds on the intensity of the associated gamma-ray line from cosmic rays emission. Our analysis includes the possibility that in the two-body decay the photon is accompanied with a neutrino. We show that, given the stringent constraints which hold on the millicharge of the neutrinos, this is not an option, except if the DM particle mass lies in the very light KeV-MeV range, allowing for a possibility of explanation of the recently claimed, yet to be confirmed, ~3.5KeV X-ray line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.