Abstract
We examine how the return predictability of deep learning models varies with stocks’ vulnerability to investors’ behavioral biases. Using an extensive list of anomaly variables, we find that the long-short strategy of buying (shorting) stocks with high (low) deep learning signals generates greater returns for stocks more vulnerable to behavioral biases, i.e., small, young, unprofitable, volatile, non-dividend-paying, close-to-default, and lottery-like stocks. This performance of deep learning models for speculative stocks becomes pronounced when investor sentiment is high, and when new information is delivered through earnings announcements. Moreover, our nonlinear deep learning signals are negatively associated with analysts’ earnings forecast error especially for speculative stocks, implying that analysts’ forecasts are too low for speculative stocks with high deep learning signals. These results suggest that deep learning models with nonlinear structures are useful for capturing mispricing induced by behavioral biases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.