Abstract
Experimental two-dimensional (2D) black phosphorus (BP) transistors typically appear in the form of Schottky barrier field effect transistors (SBFETs), but their performance limit remains open. We investigate the performance limit of monolayer BP SBFETs in the sub-10 nm scale by using ab initio quantum transport simulations. The devices with 2D graphene electrodes are apparently superior to those with bulk Ti electrodes due to their smaller and tunable Schottky barrier heights and the absence of metal induced gap states in the channels. With graphene electrodes, the performance limit of the sub-10 nm monolayer BP SBFETs outperforms the monolayer MoS2, carbon nanotube, and advanced silicon transistors and even can meet the requirements of both high performance and low power logic applications of the next decade in the latest International Technology Roadmap for Semiconductors. It appears that the ML BP SBFETs have the best intrinsic device performance among the reported sub-10 nm 2D material SBFETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.