Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.