Abstract

Positron emission tomography (PET) is useful for evaluating the cardiac metabolism of free fatty acid, glucose and oxygen both in human clinical practice and in experimental animal models. However, no data are available for such an evaluation in a model of stable compensated left ventricular hypertrophy in 14-month-old spontaneously hypertensive rats (SHRs). This study was designed to assess the metabolism of myocardial glucose in SHRs using 2-deoxy-2-[18F]fluoro-D-glucose ((18)F-FDG) using PET. The study was performed on 14-month-old male SHRs (n = 4) and age-matched Wistar Kyoto (WKY) rats (n = 4). PET scans were performed after the administration of anaesthesia with isoflurane and injection of a bolus of 39.37 ± 3.25 (mean ± SD) MBq (1.06 mCi) of (18)F-FDG. The standardized uptake value (SUV) was used to evaluate (18)F-FDG uptake by the heart. The analysis of SUV showed increased metabolism in the left ventricle of SHRs compared with WKY rats. Our results show that small animal PET using (18)F-FDG can be performed in 14-month-old SHRs to evaluate new therapies in the regression of left ventricular hypertrophy in SHRs because pathological myocardial metabolism in the SHR differs from the normal metabolism of the WKY rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.