Abstract
Cervical cancer is the fourth most common cancer among women, and cytopathological images are often used to screen for this cancer. However, manual examination is very troublesome and the misdiagnosis rate is high. In addition, cervical cancer nest cells are denser and more complex, with high overlap and opacity, increasing the difficulty of identification. The appearance of the computer aided automatic diagnosis system solves this problem. In this paper, a weakly supervised cervical cancer nest image identification approach using Conjugated Attention Mechanism and Visual Transformer (CAM-VT), which can analyze pap slides quickly and accurately. CAM-VT proposes conjugated attention mechanism and visual transformer modules for local and global feature extraction respectively, and then designs an ensemble learning module to further improve the identification capability. In order to determine a reasonable interpretation, comparative experiments are conducted on our datasets. The average accuracy of the validation set of three repeated experiments using CAM-VT framework is 88.92%, which is higher than the optimal result of 22 well-known deep learning models. Moreover, we conduct ablation experiments and extended experiments on Hematoxylin and Eosin stained gastric histopathological image datasets to verify the ability and generalization ability of the framework. Finally, the top 5 and top 10 positive probability values of cervical nests are 97.36% and 96.84%, which have important clinical and practical significance. The experimental results show that the proposed CAM-VT framework has excellent performance in potential cervical cancer nest image identification tasks for practical clinical work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.