Abstract

Microtubule networks support many cellular processes and exhibit a highly ordered architecture. However, due to the limited axial resolution of conventional light microscopy, the structural features of these networks cannot be resolved in three-dimensional (3D) space. Here, we used customized ultra-high-resolution interferometric single-molecule localization microscopy to characterize the microtubule networks in Caco2 cells. We found that the calmodulin-regulated spectrin-associated proteins (CAMSAPs) localize at a portion of microtubule intersections. Further investigation showed that depletion of CAMSAP2 and CAMSAP3 leads to the narrowing of the inter-microtubule distance. Mechanistically, CAMSAPs recognize microtubule defects, which often occur near microtubule intersections, and then recruit katanin to remove the damaged microtubules. Therefore, the CAMSAP-katanin complex is a regulatory module for the distance between microtubules. Taken together, our results characterize the architecture of cellular microtubule networks in high resolution and provide molecular insights into how the 3D structure of microtubule networks is controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.