Abstract
We investigated the inhibitory effects of intracellular cyclic adenosine monophosphate (cAMP) levels in regulating class 3 aldehyde dehydrogenase (aldh3) gene expression using cultures of primary rat hepatocytes and transient transfection experiments with HepG2 cells. In addition to regulation by an Ah receptor-dependent mechanism, expression of many members of the Ah gene battery have been shown to be negatively regulated. As was seen for the cytochrome P450 (cyp1A1) gene, aldh3 is transcriptionally inducible by polycyclic aromatic hydrocarbons (PAH), and this induction involving function of the arylhydrocarbon (Ah) receptor is inhibited by the protein kinase C (PKC) inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine di-HCl (H7) and staurosporine. However, PAH induction of ALDH-3 activity, protein, and mRNA was potentiated 2-4-fold by addition of the protein kinase A (PKA) inhibitors, N-(2-(methylamino)ethyl)-5-isoquinolinesulfonamide di-HCl (H8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide HCl (HA1004). These PKA inhibitors had no effect on the PAH induction of the cyp1A1. Protein kinase A activity of cultured hepatocytes was specifically inhibited by H8 and HA1004 in a concentration-dependent manner, but not by H7, and there was an inverse correlation observed between potentiation of PAH-induced aldh3 gene expression and inhibition of specific PKA activity by the PKA inhibitors. The cAMP analog dibutyryl cAMP, the adenylate cyclase activator forskolin, and the protein phosphatase 1 and 2A inhibitor okadaic acid all dramatically inhibited both PAH induction and H8 potentiation of PAH induction of aldh3 expression but had no effect on induction of cyp1A1 expression in cultured hepatocytes. Both basal and PAH-dependent expression of a chloramphenicol acetyltransferase expression plasmid containing approximately 3.5 kilobase pairs of the 5'-flanking region of aldh3 (pALDH3.5CAT) were enhanced 3-4-fold by the PKA inhibitor H8 but not by the PKC inhibitor H7 (>20 microM). cAMP analogs, activators of PKA activity, or protein phosphatase inhibitors diminished expression of the reporter gene in a manner identical to the native gene in cultured rat hepatocytes. Using deletion analysis of the pALDH3.5CAT construct, we demonstrated the existence of a negative regulatory region in the 5'-flanking region between -1057 and -991 base pairs which appears to be responsible for the cAMP-dependent regulation of this gene under both basal and PAH-induced conditions. At least two apparently independent mechanisms which involve protein phosphorylation regulate aldh3 expression. One involves function of the Ah receptor which requires PKC protein phosphorylation to positively regulate both aldh3 and cyp1A1 gene expression and the other a cAMP-responsive process which allows PKA activity to negatively regulate expression of aldh3 under either basal or inducible conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.