Abstract
BackgroundDiacylglycerol lipase α (DAGLα), a major biosynthetic enzyme for endogenous cannabinoid signaling, has emerged as a risk gene in multiple psychiatric disorders. However, its role in the regulation of dendritic spine plasticity is unclear. MethodsDAGLα wild-type or point mutants were overexpressed in primary cortical neurons or human embryonic kidney 293T cells. The effects of mutated variants on interaction, dendritic spine morphology, and dynamics were examined by proximity ligation assay or fluorescence recovery after photobleaching. Behavioral tests and immunohistochemistry were performed with ankyrin-G conditional knockout and wild-type male mice. ResultsDAGLα modulated dendritic spine size and density, but the effects of changes in its protein level versus enzymatic activity were different, implicating either a 2-arachidonoylglycerol (2-AG)–dependent or –independent mechanism. The 2-AG–independent effects were mediated by the interaction of DAGLα with ankyrin-G, a multifunctional scaffold protein implicated in psychiatric disorders. Using superresolution microscopy, we observed that they colocalized in distinct nanodomains, which correlated with spine size. In situ proximity ligation assay combined with structured illumination microscopy revealed that DAGLα phosphorylation upon forskolin treatment enhanced the interaction with ankyrin-G in spines, leading to increased spine size and decreased DAGLα surface diffusion. Ankyrin-G conditional knockout mice showed significantly decreased DAGLα-positive neurons in the forebrain. In mice, ankyrin-G was required for forskolin-dependent reversal of depression-related behavior. ConclusionsTaken together, ANK3 and DAGLA, both neuropsychiatric disorder genes, interact in a complex to regulate spine morphology. These data reveal novel synaptic signaling mechanisms and potential therapeutic avenues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.