Abstract

Neurogenesis, which occurs not only in the developing brain but also in restricted regions in the adult brain including the forebrain subventricular zone (SVZ), is regulated by a variety of environmental factors, extracellular signals, and intracellular signal transduction pathways. We investigated whether the transcription factor cAMP response element (CRE)-binding protein (CREB) is involved in the regulation of cell proliferation of neural stem cells (NSCs) isolated from the SVZ of adult mice. Treatment of NSCs with the protein kinase A (PKA) inhibitors H89 and KT5720 inhibited epidermal growth factor (EGF)-stimulated NSC proliferation. Similar inhibition was observed when a dominant-negative mutant of CREB (MCREB) was expressed. EGF treatment increased CRE-mediated transcriptional activity, but this increase was much less than that caused by treatment with the adenylate cyclase activator forskolin, which changed neither basal nor EGF-stimulated proliferation of NSCs. Neither PKA inhibitors nor MCREB expression blocked EGF-induced phosphorylation of extracellular signal-regulated kinase (ERK), a protein kinase mediating EGF's mitogenic action. However, MCREB suppressed EGF-induced expression of several immediately early genes including c-fos, c-jun, jun-B, and fra-1 and subsequent AP-1 transcriptional activation. MCREB expression also inhibited the ability of EGF to stimulate transcriptional activation mediated by the serum response element (SRE), a promoter sequence regulating c-fos gene expression. These results suggest that basal activity of CREB is required for the mitogenic signaling of EGF in NSCs at a level between ERK activation and SRE-mediated transcriptional activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call