Abstract

The inhibition of beta-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of beta-galactosidase expression by glucose and a diauxic growth were observed when the lacL8UV5 cells were grown on a glucose-lactose medium. The addition of isopropyl beta-D-thiogalactoside to the culture medium eliminated the glucose effect. Disruption of the crr gene or overproduction of LacY also eliminated the glucose effect. These results are fully consistent with our previous finding that the glucose effect in wild-type cells growing in a glucose-lactose medium is not due to the reduction of CRP-cAMP levels but is due to the inducer exclusion. We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted. Evidence suggested that CRP-cAMP may not enhance directly the lac repressor action in vivo. Northern blot analysis revealed that the mRNA for ptsG, a major glucose transporter gene, was markedly reduced in a delta crp or delta cya background. The constitutive expression of the ptsG gene by the introduction of a multicopy plasmid restored the glucose effect in delta cya or delta crp cells. We conclude that CRP-cAMP plays a crucial role in inducer exclusion, which is responsible for the glucose-lactose diauxie, by activating the expression of the ptsG gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call