Abstract

More recently, arsenic trioxide (ATO), was integrated into acute promyelocytic leukemia (APL) treatment, showing high efficacy and tolerability in patients with both ATRA-sensitive and ATRA-resistant APL. ATO could induce apoptosis at relatively high concentrations (0.5 to 2.0 micromol/L) and partial differentiation at low concentrations (0.1 to 0.5 micromol/L) in leukemic promyelocytes. It is known that cAMP agonists enhance low-dose ATO-induced APL cells differentiation. Less well appreciated was the possible interaction between relatively high-doses of ATO and enhanced levels of cAMP in APL cells. Here, we show that elevation of cAMP levels by forskolin inhibited ATO-mediated apoptosis in APL-derived NB4 cells, and this inhibition could be averted by cell permeable cAMP-dependent protein kinase inhibitor (14–22) amide. Inactivating phosphorylation of the proapoptotic protein Bad at Ser118 and phosphorylation of the CREB proto-oncogene at Ser133 were observed upon elevation of cAMP levels in NB4 cells. Phosphorylation of these PKA target proteins is known to promote cell survival in AML cells. The ability of cAMP to endow the APL cells with survival advantage is of particular importance when cAMP agonists may be considered as adjuncts to APL therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call