Abstract

Activation of cAMP signalling abrogates thrombin-induced hyperpermeability. One of the mechanisms underlying this protective effect is the inactivation of endothelial contractile machinery, one of the major determinants of endothelial barrier function, mainly via the activation of myosin light chain phosphatase (MLCP). To date, the mechanisms of cAMP-mediated MLCP activation are only partially understood. Here the contribution of two cAMP effectors, PKA and Epac, in the regulation of endothelial contractile machinery and barrier function was studied. Endothelial contractile machinery and barrier function were analysed in cultured human umbilical vein endothelial cells (HUVEC). The cAMP analogues 8-CPT-cAMP and 6-Bnz-cAMP were used to activate Epac and PKA, respectively, and forskolin (FSK) was used to activate adenylyl cyclase. The cells were challenged by thrombin to inhibit MLCP via the RhoA/Rock pathway. Activation of either PKA or Epac partially blocked thrombin-induced hyperpermeability. Simultaneous activation of PKA and Epac had additive effects that were comparable to that of FSK. Activation of PKA but not Epac inhibited thrombin-induced phosphorylation of MLC and the MLCP regulatory subunit MYPT1, partly via inhibition of the RhoA/Rock pathway. FSK activated the MLCP catalytic subunit PP1 via dephosphorylation and dissociation of the PP1 inhibitory protein CPI-17. FSK blunted thrombin-induced CPI-17 phosphorylation, CPI-17/PP1 complex formation, and PP1 inactivation. Down-regulation of CPI-17 attenuated thrombin-induced hyperpermeability and abolished the antagonistic effect of the PKA activator, whereas the Epac activator retained its antagonistic effect. cAMP/PKA regulates the endothelial barrier via inhibition of the contractile machinery, mainly by the activation of MLCP via inhibition of CPI-17 and RhoA/Rock. The permeability-lowering effect of the cAMP/Epac pathway is independent of CPI-17.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.