Abstract

Rat forebrain- and heart-derived mRNA were used to express Ca2+ channels inXenopus oocytes to study their cAMP-dependent regulation. Forebrain and heart mRNA-directed Ca2+ channel currents (I Ba, 40 mM Ba2+ were used as a charge carrier) showed similar voltage dependence and macroscopic kinetics but different pharmacology, which allowed us to attribute them to N- and L-type, respectively. Brain mRNA-directedI Ba was insensitive to the dihydropyridine (DHP) antagonist nitrendipine and the agonist Bay K 8644, but could be inhibited by 70% by 1 μM of ω-conotoxin GVIA, whileI Ba directed by cardiac mRNA was extremely sensitive to DHP. Neither forebrain, nor heart mRNA-directedI Ba could be augmented by the external applications of the β-agonist isoproterenol (ISO, 10 μM), the adenylate cyclase (AC) activator forskolin (FSK, 10 μM), the phosphodiesterase inhibitor IBMX (200 μM), or their mixtures. “Cardiac”I Ba was also unresponsive to the external applications of a membrane-permeable cAMP analog 8-(4-chlorophenylthio)-cAMP (500 μM), as well as to the direct intracellular infusion of cAMP (300 μM). Blockade of cAMP-dependent phosphorylation pathway by intracellular perfusion of the oocytes with 200 μM Rp-cAMP plus 200 μM of a synthetic protein kinase A (PKA) inhibitor peptide also exerted no effect on the basal level ofI Ba, suggesting that the expressed Ca2+ channels are not fully phosphorylated in the resting state. Measurements of the concentration of cAMP in the control and heart mRNA-injected oocytes, using an enzyme-immunoassay system, showed that they display a similar basal cAMP concentration (2.0–2.5 μM); however, application of ISO + FSK increased the cAMP concentration 2- to 3-fold in mRNA-injected oocytes, but not in control oocytes. Thus, our data demonstrate that injection of rat cardiac mRNA intoXenopus oocytes results in the expression of receptor-stimulated AC and L-type Ca2+ channels, which do not respond to cAMP or PKA inhibitors. Unresponsiveness to cAMP-dependent regulation is not channel type-specific, since N-type Ca2+ channels expressed by means of forebrain mRNA are also insensitive to such regulation. Unresponsiveness of the channels to cAMP-mediated regulation is most probably due to lack/inaccessibility of PKA-dependent phosphorylation site(s), or loss of functional significance of phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.