Abstract

Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca(2+)) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca(2+) in pollen. However, direct recordings of cyclic-nucleotide-induced Ca(2+) currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca(2+) channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca(2+) concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca(2+) channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca(2+) and K(+). However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca(2+) concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca(2+) channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call