Abstract

e14076 Background: We report a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this platform, T-lymphocyte membranes were camouflaged to the surface of poly-lactic-co-glycolic acid nanoparticles, with local low-dose irradiation (LDI) as a chemoattractant. These carriers were further anchored with the recombinant protein anti-EGFR-iRGD, improving tumor accumulation, facilitating tumor uptake. Methods: The T-lymphocyte membrane coating was verified by dynamic light scattering, transmission electron microscopy and confocal laser scanning microscopy. The particle phagocytosis study was performed using a human phagocytic cell line. In vivo NIR fluorescence imaging was performed to monitor the route of nanoparticles. EGFR expression of tumor cells was tested before and after LDI. Results: This new platform reduced phagocytosis of macrophages by 23.99% (p = 0.002). iRGD-EGFR anchored T-lymphocyte membrane-encapsulated nanoparticles accumulated in tumor site more than unfunctionalized groups, while LDI significantly enhanced the targeting ability. LDI could up-regulate EGFR expression on tumor cells, which was important in the process of localization of iRGD-EGFR anchored T-lymphocyte membrane-encapsulated nanoparticles in tumors. Conclusions: This new platform included both the long circulation time and tumor sites accumulation ability while LDI could significantly enhance the tumor accumulation ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.