Abstract

Animals achieve camouflage through a variety of mechanisms, of which background matching and disruptive coloration are likely the most common. Although many studies have investigated camouflage mechanisms using artificial stimuli and in lab experiments, less work has addressed camouflage in the wild. Here we examine egg camouflage in clutches laid by ground-nesting Snowy Plovers Charadrius nivosus and Least Terns Sternula antillarum breeding in mixed aggregations at Bahía de Ceuta, Sinaloa, Mexico. We obtained digital images of clutches laid by both species. We then calibrated the images and used custom computer software and edge detection algorithms to quantify measures related to three potential camouflage mechanisms: pattern complexity matching, disruptive effects and background color matching. Based on our image analyses, Snowy Plover clutches, in general, appeared to be more camouflaged than Least Tern clutches. Snowy Plover clutches also survived better than Least Tern clutches. Unexpectedly, variation in clutch survival was not explained by any measure of egg camouflage in either species. We conclude that measures of egg camouflage are poor predictors of clutch survival in this population. The behavior of the incubating parents may also affect clutch predation. Determining the significance of egg camouflage requires further testing using visual models and behavioral experiments.

Highlights

  • Images capture entire scenes and can be combined with image analysis techniques, like edge detection algorithms

  • We focus on three camouflage mechanisms that fall into two broad classes of camouflage: background matching and disruptive coloration

  • We found that Snowy Plover clutches (N = 30), compared to Least Tern clutches (N = 24), were laid on background substrates with more edges (Table 1, Fig. 2), suggesting better Snowy Plover clutch camouflage based on this metric[49]

Read more

Summary

Introduction

Images capture entire scenes (containing information about the color and patterning of the organism and its background) and can be combined with image analysis techniques, like edge detection algorithms. Plovers and terns have been the subject of several studies on egg camouflage, presenting mixed evidence as to whether aspects of egg appearance and microhabitat affect clutch survival[12,14,15,29] These studies, as with most other field studies of egg camouflage, have not fully quantified and tested the effects of different camouflage mechanisms in a quantitative framework. This is because studies (i) assess only limited aspects of egg camouflage, (ii) rely on a subjective human description of egg camouflage, or (iii) fail to correct for different ambient conditions such as variable light environments An exception to this is the recent study by Troscianko et al.[17], which examined plumage and egg camouflage in nine species of ground-nesting nightjars, plovers and coursers, using a calibrated camera, visual models for three types of predators (two mammalian, one avian), and a range of quantitative tools. We assess (i) the degree of pattern complexity matching (a form of background matching), (ii) the degree of disruptive effects (a form of disruptive coloration), and (iii) the degree of background color matching (a form of background matching)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.