Abstract

Hyperactivation of the amygdala is implicated in anxiety and mood disorders, but the precise underlying mechanisms are unclear. We previously reported that depletion of serotonin (5-hydroxytryptamine, 5-HT) in the basolateral nucleus of the amygdala (BLA) using the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) potentiated learned fear and increased glutamate receptor (Glu) expression in BLA. Here we investigated the hypothesis that CaMKII facilitates anxiety-like behavior and increased Glu/AMPA receptor subunit A1 (GluA1) expression following depletion of 5-HT in the BLA. Infusion of 5,7-DHT into the BLA resulted in anxiety-like behavior in the open field test (OFT) and increased the phosphorylation of CaMKIIα (Thr-286) in the BLA. Knockdown of the CaMKIIα subunit using adeno-associated virus (AAV)-delivered shRNAi concomitantly attenuated anxiety-like behavior in the OFT and decreased GluA1 expression in the BLA. Our results suggest that the CaMKII signaling plays a key role in low 5-HT-induced anxiety and mood disturbances, potentially through regulation of GluA1 expression in the BLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call