Abstract

The mechanisms underlying Ca2+/calmodulin-dependent protein kinase II (CaMKII)-induced arrhythmias in ischemia-reperfusion (I/R) are not fully understood. We tested the hypothesis that CaMKII increases late Na+ current ( INa,L) via phosphorylation of Nav1.5 at Ser571 during I/R, thereby increasing arrhythmia susceptibility. To test our hypothesis, we studied isolated, Langendorff-perfused hearts from wild-type (WT) mice and mice expressing Nav channel variants Nav1.5-Ser571E (S571E) and Nav1.5-Ser571A (S571A). WT hearts showed a significant increase in the levels of phosphorylated CaMKII and Nav1.5 at Ser571 [p-Nav1.5(S571)] after 15 min of global ischemia (just before the onset of reperfusion). Optical mapping experiments revealed an increase in action potential duration (APD) and APD dispersion without changes in conduction velocity during I/R in WT and S571E compared with S571A hearts. At the same time, WT and S571E hearts showed an increase in spontaneous arrhythmia events (e.g., premature ventricular contractions) and an increase in the inducibility of reentrant arrhythmias during reperfusion. Pretreatment of WT hearts with the Na+ channel blocker mexiletine (10 μM) normalized APD dispersion and reduced arrhythmia susceptibility during I/R. We conclude that CaMKII-dependent phosphorylation of Nav1.5 is a crucial driver for increased INa,L, arrhythmia triggers, and substrate during I/R. Selective targeting of this CaMKII-dependent pathway may have therapeutic potential for reducing arrhythmias in the setting of I/R. NEW & NOTEWORTHY Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of Nav1.5 at Ser571 leads to a prolongation of action potential duration (APD), increased APD dispersion, and increased arrhythmia susceptibility after ischemia-reperfusion in isolated mouse hearts. Genetic ablation of the CaMKII-dependent phosphorylation site Ser571 on Nav1.5 or low-dose mexiletine (to inhibit late Na+ current) reduced APD dispersion, arrhythmia triggers, and ventricular tachycardia inducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.