Abstract

Alpha Ca(2+)/calmodulin-dependent kinase II (alphaCaMKII), the major synaptic protein in the forebrain, can switch into a state of autonomous activity upon autophosphorylation. It has been proposed that alphaCaMKII autophosphorylation mediates long-term memory (LTM) storage. However, recent evidence shows that synaptic stimulation and behavioural training only transiently increase the autonomous alphaCaMKII activity, implicating alphaCaMKII autophosphorylation in LTM formation rather than storage. Consistent with this, mutant mice deficient in alphaCaMKII autophosphorylation can store LTM after a massed training protocol, but cannot form LTM after a single trial. Here, we review evidence that the role of alphaCaMKII autophosphorylation is in fact to enable LTM formation after a single training trial, possibly by regulating LTM consolidation-specific transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.