Abstract

Control of cardiomyocyte cytosolic Ca(2+) levels is crucial in determining inotropic status and ischemia/reperfusion stress response. Responsive to fluctuations in cellular Ca(2+), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase integral to the processes regulating cardiomyocyte Ca(2+) channels/transporters. CaMKII is primarily expressed either in the δB or δC splice variant forms, which may mediate differential influences on cardiomyocyte function and pathological response mechanisms. Increases in myocyte Ca(2+) levels promote the binding of a Ca(2+)/calmodulin complex to CaMKII, to activate the kinase. Activity is also maintained through a series of post-translational modifications within a critical region of the regulatory domain of the protein. Recent data indicate that the post-translational modification status of CaMKIIδB/δC variants may have an important influence on reperfusion outcomes. This study provided the first evidence that the specific type of CaMKII post-translational modification has a role in determining target selectivity of downstream Ca(2+) transporters. The study was also able to demonstrate that the phosphorylated form of CaMKII closely co-localizes with CaMKIIδB in the nuclear/myofilament fraction, contrasting with a co-enrichment of oxidized CaMKII in the membrane fraction with CaMKIIδC . It has also been possible to conclude that a hyper-phosphorylation of CaMKII (Thr287) in reperfused hearts represents a hyper-activation of the CaMKIIδB , which exerts anti-arrhythmic actions through an enhanced capacity to selectively increase sarcoplasmic reticulum Ca(2+) uptake and maintain cytosolic Ca(2+) levels. This suggests that suppression of global CaMKIIδ may not be an efficacious approach to developing optimal pharmacological interventions for the vulnerable heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call